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Abstract

Personalized computational models can improve atrial
fibrillation (AF) treatment but typically require invasive
imaging or sinus rhythm electroanatomic mapping (EAM),
which limits their practicality for real-time use during pro-
cedures. This study aims to create an automated work-
flow for building patient-specific models from AF EAM
data, combining anatomical, structural, and functional de-
tails. A pipeline integrating bi-atrial anatomical models,
AF recordings, and calibrated simulations was used to
study AF dynamics with the Atrial Modelling Toolkit. AF
cycle length (CL) measured from bi-atrial basket record-
ings was mapped onto atrial anatomies using Gaussian
Process Manifold Interpolation (GPMI) and used in model
calibration. AF was simulated using baseline parameters.
AFCL recordings for raw clinical data in the LA ranged
from 111-220ms (173.30ms + 13.73ms) and in the RA
from 123-220ms (174.30ms £ 15.10ms) across all cases.
AFCL recordings for simulated AF in the LA ranged from
71-290ms (198.13ms + 8.91ms) and in the RA from 92.5-
370ms (225.52ms = 10.90ms) across all cases. AF simula-
tions with baseline parameters showed chaotic activation
patterns, highlighting the effects of AF dynamics. Person-
alized computer models can be created rapidly using this
pipeline to create simulations that may provide insights
into AF mechanisms and guide individual therapy.

1. Introduction

Atrial fibrillation (AF) is the most common sustained
cardiac arrhythmia and is associated with an increased risk
of stroke, heart failure, and mortality. Current therapies,
including anti-arrhythmic drugs and pulmonary vein iso-
lation, remain suboptimal, with recurrence in 20%—-40%
of patients. Personalised computational models, or cardiac
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digital twins, provide a promising avenue to improve AF
management by tailoring therapy to individual patient data
[1].

A key challenge in developing such models is the un-
certainty inherent in clinical measurements used for cali-
bration. In particular, electrogram recordings of AF cycle
length (AFCL) are often noisy, spatially limited, and vari-
able across regions of the atria [2]. This uncertainty can
propagate through the modelling pipeline, potentially mis-
representing AF dynamics and reducing the accuracy of
therapy guidance. Addressing these uncertainties is there-
fore essential for reliable model predictions and clinical
translation.

In this study, we present an automated workflow to
generate patient-specific biatrial models directly from AF
electroanatomic mapping data. AF cycle length (AFCL)
measurements from basket recordings were interpolated
across biatrial anatomies using Gaussian Process Manifold
Interpolation and used to calibrate homogeneous AFCL
simulations. Comparing calibrated simulations and base-
line simulations to our clinical data enables understanding
AF dynamics. By quantifying and incorporating these un-
certainties, we aim to improve the robustness of person-
alised models for guiding AF treatment.

2. Methods

Our approach is to analyse clinical recordings; gener-
ate anatomical models; calibrate these models with un-
certainty; simulate atrial fibrillation; test the contributions
of atrial fibrillation dynamics and their rate response on
model predictions; and validate these calibrated models
against clinical ranges of behaviours. A workflow of our
methodology can be seen in Figure 1.
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Figure 1. Overview of model construction pipeline.

2.1.  Clinical Recordings

Twenty patients undergoing catheter ablation for atrial
fibrillation at Stanford University were included in this
study. We analysed atrial fibrillation data collected from
the left atria using a constellation catheter (Boston Scien-
tific). These recordings were each 60s duration, and there
were a total of 96 epochs of data to analyse across the 20
patients, corresponding to different locations of the basket
catheter. For each case, we exported the electroanatomical
geometry, the roving electrode locations, surface electrode
locations, and unipolar signals.

2.2. Calculating AF Cycle Length Uncer-
tainty Quantification

We calculated atrial fibrillation cycle length (AFCL) for
each unipolar signal using autocorrelation [3] (Figure 2).
This technique identifies the interval shifts corresponding
to the highest correlation of the signal. We considered a
histogram of these values and calculated the value cor-
responding to the lowest 5% (to eliminate the effects of
noise) which were then excluded.
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Figure 2. Probabilistic interpolation of AF cycle length
(AFCL). Interpolated AFCL maps of the LA and RA in
posterior—anterior and anterior—posterior views. Red dots
indicate CL points.

2.3. Mapping AFCL to Atrial Geometry

AFCL values from basket recordings were spatially
mapped onto the atrial surface using Gaussian Process
Manifold Interpolation (GPMI). This approach accounts
for sparse and noisy data, enabling interpolation of AFCL
across the biatrial geometry while preserving smoothness
and continuity.

2.4. Generating Anatomical Models from
Electroanatomic Data

Patient-specific atrial anatomies were reconstructed
from electroanatomic maps (EAM). Anatomical meshes
were pre-processed and rotated in Blender, where they
were rotated and aligned to ensure that the left and right
atria were in the correct anatomical orientation. Biatrial
computational models were built using the AtrialMTK
toolkit [4]. Fibre anisotropy was assigned using a rule-
based approach and baseline electrophysiology was repre-
sented with the Courtemanche et al. human atrial ionic cell
model using default ionic conductances [5].

2.5. Calibrating Models to Homogenous
AFCL

The simulations calibrated to a homogeneous AFCL
used the mean AFCL values extracted directly from the
raw clinical data. Ionic conductances in the Courtemanche
atrial cell model were systematically adjusted so that the
simulated AFCL reproduced the mean clinical AFCL for
each atrium (RA and LA). Calibration was performed sep-
arately for the right atrium (RA) and left atrium (LA),
with the resulting conductance scaling applied homoge-
neously across each respective atrium. This approach en-
sured that the simulated atrial cycle length best represented
the patient-specific clinical recordings with a consistent
AFCL applied throughout each atrium.

2.6.  Arrhythmia Simulations

Simulations of sustained AF were performed under two
conditions (Baseline and Calibrated homogeneous AFCL).
The baseline simulations used the default ionic conduc-
tances from the Courtemanche ionic cell model [5] with-
out calibration using openCARP [6]. The simulations cal-
ibrated to a homogeneous AFCL systematic adjustment
of Courtemanche ionic model conductances to reproduce
patient-specific AFCL values. For each patient, AFCL
maps from basket recordings were compared with simu-
lated AFCL maps to assess how calibration influenced the
accuracy of AF dynamics. Comparisons included both
mean AFCL values and regional distributions across the
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atria. The calibrated homogeneous models were then com-
pared with baseline models to evaluate the effect of AF
dynamics, and with clinical AFCL to see if either or both
simulations had a good match.

2.7. Post-Processing Simulation Data

We post-processed each AF simulation to calculate
phase singularity locations, numbers and density maps.
We also calculated AF cycle length using autocorrelation
as per our clinical data, applied to unipolar electrograms
simulated at the registered electroanatomic mapping loca-
tions. We registered these spatial maps for each simulation
to an atlas anatomy using atrial coordinates. We compared
simulated AF cycle length to the clinical values.

3. Results and Discussion

AF cycle length (AFCL) was calculated from biatrial
basket electrogram recordings. The number of signals
ranged from 64-256 (192 + 78.4) in the LA and 64-128
(115.2 + 28.6) in the RA. Clinical AFCL values showed
variability: mean AFCL ranged from 141-207 ms in the
left atrium and from 150-212 ms in the RA. Within pa-
tients, AFCL also varied regionally, with localised zones
of rapid activity contributing to heterogeneous conduc-
tion patterns. This variability highlights the complex and
patient-specific nature of AF, underlining the need for
models that can incorporate such differences.

Simulations performed with baseline parameter values
reproduced sustained AF and generated complex, chaotic
activation patterns (Figure 3). These patterns are valuable
for understanding AF dynamics. However, the baseline
models did not reproduce the AFCL observed clinically.

Simulated AF with B
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Figure 3. Simulations of AF using baseline parameters
across 20 cases. Each biatrial anatomy represents an in-
dividual simulation with baseline ionic parameters from
Courtemanche ionic cell model.

Simulated AFCLs clustered around 170-180 ms across
patients, failing to reflect either the inter-patient variability
or the regional heterogeneity seen in the clinical data. This
mismatch highlighted the limitations of uncalibrated base-
line models for representing patient-specific electrophys-
iology and motivated calibration to homogeneous AFCL
values.

The simulations calibrated to a homogeneous AFCL
used the mean AFCL measured in the raw clinical record-
ings for the RA and LA separately, with ionic conduc-
tances adjusted so that simulated AFCLs matched these
values. While this approach improved the representation
of atrial cycle length compared to baseline models, homo-
geneous calibration still did not fully capture the variability
and heterogeneity of the clinical AFCL maps (Figure 4).
The resulting simulations revealed differences in AF or-
ganisation compared to baseline which included changes
in driver localisation and propagation patterns, but there
was still mismatch with clinical AFCL.

AFCL of Homogenous Calibration across 20 cases

Figure 4. Atrial fibrillation cycle length (AFCL) from
homogeneous calibration across 20 cases. Each biatrial
anatomy representing AFCL measured in an individual
simulation calibrated to their mean clinical AFCL.

A comparison between baseline and calibrated AFCL
maps showed that calibration altered AF dynamics, chang-
ing the spatial organisation of activity and shifting pre-
dicted driver locations (compare Figure 5 & 6). Simu-
lations of AF with baseline parameters had an average
of 3.78 number of rotational activities across all cases
(SD=2.71), and simulations of AF with homogeneous
AFCL had an average of 3.78 number of rotational activi-
ties across all cases (SD=1.70). However, while calibration
to homogeneous AFCL provided a closer approximation of
clinical data than baseline simulations, it still failed to fully
match the clinical distributions.
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across 20 cases

Figure 5. Phase singularity (PS) maps from simula-
tions with baseline parameters across 20 cases. Each bi-
atrial model represents a separate patient-specific simula-
tion performed using baseline Courtemanche ionic model
parameters. The colour scale indicates normalised PS den-
sity (0-1), highlighting regions of re-entrant activity under
baseline conditions.

PS maps of Simulations with Calibration to Homogenous AFCL across 20 cases

PS density

Figure 6. Phase singularity (PS) maps from simulations
calibrated to homogeneous AFCL across 20 cases. Each
biatrial model represents an individual patient-specific
simulation calibrated to homogeneous atrial fibrillation cy-
cle length (AFCL). The colour scale indicates normalised
PS density (0-1), highlighting regions of re-entrant activ-
ity after calibration to homogeneous AFCL.

4. Conclusion & Future Research Plans

Simulations with baseline parameters reproduced AF
but resulted in complex and chaotic activation patterns that
did not reflect patient-specific variability. Calibration to
patient-derived AFCL maps provides a pathway to investi-
gate how functional properties influence AF dynamics, of-
fering improved alignment with clinical observations. Ex-
tending this approach to incorporate heterogeneous regions

with differing cycle lengths will be essential to better cap-
ture the spatial variability of AF and enhance the predictive
power of personalised models.
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